本文作者:KTV免费预定

割圆术(割圆术求出圆周率方法)

KTV免费预定 2022年12月04日 03:55:45 88
割圆术(割圆术求出圆周率方法)摘要: 本文目录一览:1、刘徽的“割圆术”是什么?2、...

本文目录一览:

刘徽的“割圆术”是什么?

割圆术(cyclotomic method)

所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。

“圜,一中同长也”。意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。

为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”。

什么是割圆术?

割圆术是以“圆内接正多边形的面积”,来无限逼近“圆面积”。

即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率。

根据“圆周长/圆直径=圆周率”,那么圆周长=圆直径*圆周率=2*半径*圆周率(这就是熟悉的圆周长=2πr的来由)。因此“圆周长公式”根本就不用背的,只要有小学知识,知道“圆周率的含义”,就可自行推导计算。也许大家都知道“圆周率和π”,但它的“含义及作用”往往被忽略,这也就是割圆术的意义所在。

扩展资料

在证明这个圆面积公式的时候有两个重要思想,一个就是所讲的极限思想。

那么第二步,更关键的一步,他把与圆周合体的这个正多边形,就是不可再割的这个正多边形,进行无穷小分割,再分割成无穷多个以圆心为顶点,以多边形每边为底的无穷多个小等腰三角形,这个底乘半径为小三角形面积的两倍,把所有这些底乘半径加起来,应该是圆面积的两倍。

那么就等于圆周长乘半径等于两个圆面积。所以一个圆面积等于半周乘半径,所以刘徽说故半周乘半径而为圆幂。

那么他的原话就是“以一面乘半径,觚而裁之,每辄自倍。故以半周乘半径而为圆幂”。最后完全证明了圆面积公式,证明了圆面积公式,也就证明了“周三径一”的不精确。

随着圆面积公式的证明,刘徽也创造出了求圆周率精确近似值的科学程序。在刘徽之前古希腊数学家阿基米德也曾研究过求解圆周率的问题。

参考资料来源:百度百科-割圆术

割圆术是什么意思?

割圆术就是用圆内接正多边形来近似代替圆。刘徽认为割圆术,当圆内接正多边形数无限增加时割圆术,其周长即愈益逼近圆周长。”

圆内接正多边形数无限多时,其周长割圆术的极限即为圆周长,面积的极限即为圆面积。这里包含了最早的极限概念和直线曲线转化的思想,对于后世高等数学的极限理论的发展,具有十分重要的意义。

刘徽根据割圆术,从圆内接正六边形计算,边数逐步加倍,相继算出正12边形、正24边形等,则圆内接正多边形逐渐逼近圆,从而验证得圆面积的计算公式并求出较精确的圆周率值。

求出了π=3.14124的数值。不仅如此,他还继续计算,直到算出圆内接正3072边形的面积,求出更精确的圆周率值π=3. 1416。

扩展资料

关于割圆术的小故事

我国古代的刘徽他为了圆周率的计算一直潜心钻研着。一次,刘徽看到石匠在加工石头,觉得很有趣就仔细观察了起来。“哇!原本一块方石,经石匠师傅凿去四角,就变成了八角形的石头。再去八个角,又变成了十六边形。”一斧一斧地凿下去,一块方形石料就被加工成了一根光滑的圆柱。

谁会想到,在一般人看来非常普通的事情,却触发了刘徽智慧的火花。他想:“石匠加工石料的方法,可不可以用在圆周率的研究上呢割圆术?”

于是,刘徽采用这个方法,把圆逐渐分割下去,一试果然有效。他发明了亘古未有的“割圆术”。他沿着割圆术的思路,从圆内接正六边形算起,边数依次加倍,相继算出正12边形,正24边形……直到正192边形的面积。

得到圆周率兀的近似值为157/50(3.14)割圆术;后来,他又算出圆内接正3072边形的面积,从而得到更精确的圆周率近似值:π≈3927/1250(3.1416)。

参考资料来源:百度百科-割圆术

割圆术是谁发明的?

割圆术是刘徽发明的。

3世纪中期割圆术,魏晋时期的数学家刘徽首创割圆术割圆术,为计算圆周率建立割圆术了严密的理论和完善的算法割圆术,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法。

特点

刘徽割圆术简单而又严谨,富于程序性,可以继续分割下去,求得更精确的圆周率。南北朝时期著名数学家祖冲之用刘徽割圆术计算11次,分割圆为12288边形,得圆周率=3.1415929,成为此后千年世界上最准确的圆周率,成为了中国历史长河中出色的数学家。

刘徽的割圆术具体内容是什么?

刘徽从圆内接正六边形开始,使边数逐次加倍,作出正十二边形、正二十四边形…,并依次计算出它们的面积,这些结果将逐渐逼近圆面积,这样就可以求出圆周率的值,这种方法被称为刘徽割圆术。用刘徽的话来说,“割之弥细,失之弥少,割之又割,以至于不可割,则与圆合体而无所失矣。”意思就是说把圆周分得越细,即圆内接正多边形的边数越多,用它的面积去代替圆面积,就丢失的越少。不断地分割下去,让边数不断地增多,那么边数无限多的正多边形的面积就与圆面积相等了。

阅读
分享