本文作者:KTV免费预定

互为反函数是什么意思(互为反函数的有什么性质)

KTV免费预定 2022年11月29日 13:12:29 45
互为反函数是什么意思(互为反函数的有什么性质)摘要: 本文目录一览:1、什么叫互为反函数2、...

本文目录一览:

什么叫互为反函数

1.反函数的概念

设y=f(x)表示y是自变量x的函数互为反函数是什么意思,它的定义域为A互为反函数是什么意思,值域为C,从式子y=f(x)中解出x,得到式子x=φ(y).如果对于y在C中的任何一个值,通过x=φ(y),x在A中都有唯一确定的值和它对应,那么x=φ(y)就表示x是自变量y的函数.这样的函数x=φ(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y),通常将它改写成y=f-1(x).

函数y=f(x)的定义域是它的反函数y=f-1(x)的值域互为反函数是什么意思;函数y=f(x)的值域是它的反函数y=f-1(x)的定义域.

函数y=f(x)的图像和它的反函数y=f-1(x)的图像关于直线y=x对称.

2.反函数概念的理解

反函数实质上也是函数.

反函数是相对于原函数而言,换句话说,反函数不能脱离原函数而单独存在.

并不是所有的函数都有反函数.例如函数y=x2没有反函数.只有原象唯一的函数,即对任意x1≠x2能推断出f(x1)≠f(x2)成立的函数f(x)才具有反函数(这里x1、x2是f(x)的定义域内的两个值).

如果函数y=f(x)有反函数y=f-1(x),那么函数y=f(x)也是其反函数y=f-1(x)的反函数,即它们互为反函数.

函数y=f(x)的定义域和值域分别是其反函数y=f-1(x)的值域和定义域.

反函数的定义域和值域应该正好是原来函数的值域和定义域.例如,函数y= (x∈Z)不是函数y=2x(x∈Z)的反函数,因为前者的定义域显然不是后者的值域.因此,求函数y=f(x)的反函数y=f-1(x)时,必须确定原来函数y=f(x)的值域.

3.求给定解析式的函数y=f(x)的反函数,其步骤为:

(1)从方程y=f(x)中解出x=f-1(y);

(2)将x、y互换,得到y=f-1(x);

(3)根据y=f(x)的值域,写出y=f-1(x)的定义域.

互为反函数的两个函数如果有解析式,一般是不同的,但也有相同的.例如函数y=x的反函数仍是y=x,函数y= 的反函数仍是y= .

4.互为反函数图像间的关系

在同一个直角坐标系中,函数y=f(x)与其反函数y=f-1(x)的图像关于直线y=x对称.特别地,当函数与其反函数相同时,函数的图像本身关于直线y=x对称.

在y=f(x)与x=f-1(y)中,x、y所表示的量相同,但是地位不同.在y=f(x)中,x是自变量,y是x的函数互为反函数是什么意思;在x=f-1(y)中,y是自变量,x是y的函数.在同一个直角坐标系中,y=f(x)与x=f-1(y)的图像是同一个点集.

5.反函数具备的其它性质

在y=f(x)与y=f-1(x)中,x、y所处的地位相同,但表示的量的意义不同.

若y=f(x)(x∈A),与y=f-1(x)(x∈C)互为反函数,则有

f[f-1(x)]=x(x∈C);

f-1[f(x)]=x(x∈A).

互为反函数的两个函数在它们各自的定义域具有相同的单调性.

奇函数若有反函数,则其反函数也是奇函数.

具有单调性的函数必有反函数.

两个互为反函数的图像如果有交点,它们的交点不一定在直线y=x上.

在第一种方法如何直接求反函数 第二种方法中所讲的互为反函数是什么意思?

看不清楚那个分数

用a表示吧

f(x)=3+loga x =y

则x=a^(y-3)

则f(x)=a^(x-3)

求出反函数 那么互为反函数这两个函数

(1)互为反函数的两个函数的图象关于直线y=x对称;

(2)函数存在反函数的充要条件是,函数在它的定义域上是单调的;

(3)一个函数与它的反函数在相应区间上单调性一致;

(4)偶函数一定不存在反函数,奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

(5)一切隐函数具有反函数;

(6)一段连续的函数的单调性在对应区间内具有一致性;

(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。

(8)反函数是相互的

(9)定义域、值域相反对应法则互逆

(10)不是所有函数都有反函数如y=x的偶次方

互为反函数是什么意思,大学反函数是什么意思

1.反函数释义:对于表示y依x而变的已知函数y=f(x)来说,表示x依y而变的函数x=g(y)就叫做它的反函数。

2.如是y=x3的反函数。

3. 函数和原函数的复合函数等于x,即:习惯上我们用x来表示自变量,用y来表示因变量,于是函数y=f(x)的反函数通常写成 。

阅读
分享