本文作者:KTV免费预定

arctan导数(arctan导数证明)

KTV免费预定 2022年11月06日 02:54:57 53
arctan导数(arctan导数证明)摘要: 本文目录一览:1、arctanx的导数是什么arctanx怎么推导...

本文目录一览:

arctanx的导数是什么arctanx怎么推导

1、arctanxarctan导数的导数是arctan导数:1/1+x2。

2、设y=arctanx,则x=tany。

因为arctanx′=1/tany′arctan导数,且tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos2y=1/cos2y。

则arctanx′=cos2y=cos2y/sin2y+cos2y=1/1+tan2y=1/1+x2。

所以arctanx的导数是1/1+x2。

arctanx的导数怎么求

解:y=arctanx,则x=tany

arctanx′=1/tany′

tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y

则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²

y=arctanx,所以tany=x此时等式两边都求导

得y’tany’=1则y’=1/tany’因y’=arctanx’

所以arctanx’=1/tany’

而tany’=(siny/cosy)’=(siny’cosy-sinycosy’)/cosy的平方=(cosy的平方+siny的平方)/cos的平方=1+tany的平方=1+x的平方。

导函数

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。

以上内容参考:百度百科-导数

arctanx的导数是什么

arctanx的导数:y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。

证明过程

三角函数求导公式

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

反函数求导法则

如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f−1(x)y=f−1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且

[f−1(x)]′=1f′(y)或dydx=1dxdy

[f−1(x)]′=1f′(y)或dydx=1dxdy

这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。

例:设x=siny,y∈[−π2,π2]x=sin⁡y,y∈[−π2,π2]为直接导数,则y=arcsinxy=arcsin⁡x是它的反函数,求反函数的导数.

解:函数x=sinyx=sin⁡y在区间内单调可导,f′(y)=cosy≠0f′(y)=cos⁡y≠0

因此,由公式得

(arcsinx)′=1(siny)′

(arcsin⁡x)′=1(sin⁡y)′

=1cosy=11−sin2y−−−−−−−−√=11−x2−−−−−√

=1cos⁡y=11−sin2⁡y=11−x2

arctanx的求导公式是什么?

设x=tany

tany'=sex^y

arctanx'=1/(tany)'=1/sec^y

sec^y=1+tan^y=1+x^2

所以(arctanx)'=1/(1+x^2)

对于双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其arctan导数他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果。

扩展资料:

在推导的过程中有这几个常见的公式需要用到:

⒈(链式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量arctan导数,而g'(x)中把x看作变量』

2. y=u*v,y'=u'v+uv'(一般的leibniz公式)

3.y=u/v,y'=(u'v-uv')/v^2,事实上4.可由3.直接推得

4.(反函数求导法则)y=f(x)的反函数是x=g(y),则有y'=1/x'

正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。

由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。

引进多值函数概念后,就可以在正切函数的整个定义域(x∈R,且x≠kπ+π/2,k∈Z)上来考虑它的反函数,这时的反正切函数是多值的,记为 y=Arctan x,定义域是(-∞,+∞),值域是 y∈R,y≠kπ+π/2,k∈Z。于是,把 y=arctan x (x∈(-∞,+∞),y∈(-π/2,π/2))称为反正切函数的主值,而把 y=Arctan x=kπ+arctan x (x∈R,y∈R,y≠kπ+π/2,k∈Z)称为反正切函数的通值。反正切函数在(-∞,+∞)上的图像可由区间(-π/2,π/2)上的正切曲线作关于直线 y=x 的对称变换而得到。

反正切函数的大致图像如图所示,显然与函数y=tanx,(x∈R)关于直线y=x对称,且渐近线为y=π/2和y=-π/2。

arctanx的导数是什么?

arctanx的导数为1/(1+x²)

解:令y=arctanx,则x=tany。

对x=tany这个方程“=”的两边同时对x求导,则

(x)'=(tany)'

1=sec²y*(y)',则

(y)'=1/sec²y

又tany=x,则sec²y=1+tan²y=1+x²

得,(y)'=1/(1+x²)

即arctanx的导数为1/(1+x²)。

1、导数的四则运算(u与v都是关于x的函数)

(1)(u±v)'=u'±v'

(2)(u*v)'=u'*v+u*v'

(3)(u/v)'=(u'*v-u*v')/v²

2、导数的基本公式

C'=0(C为常数)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx

3、函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

arctanx的导数怎么求?

解:令y=arctanx,则x=tany。

对x=tany这个方程“=”的两边同时对x求导,则

(x)'=(tany)'

1=sec²y*(y)',则

(y)'=1/sec²y

又tany=x,则sec²y=1+tan²y=1+x²

得,(y)'=1/(1+x²)

即arctanx的导数为1/(1+x²)。

扩展资料:

1、导数的四则运算(u与v都是关于x的函数)

(1)(u±v)'=u'±v'

(2)(u*v)'=u'*v+u*v'

(3)(u/v)'=(u'*v-u*v')/v²

2、导数的基本公式

C'=0(C为常数)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx

3、求导例题

(1)y=4x^4+sinxcosx,则(y)'=(4x^4+sinxcosx)'

=(4x^4)'+(sinxcosx)'

=16x^3+(sinx)'*cosx+sinx*(cosx)'

=16x^3+cosx²x-sinx²x

=16x^3+cos2x

(2)y=x/(x+1),则(y)'=(x/(x+1))'

=(x'*(x+1)-x*(x+1)')/(x+1)²

=((x+1)-x)/(x+1)²

=1/(x+1)²

参考资料来源:百度百科-导数

阅读
分享